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METHOD AND APPARATUS FOR
DETECTING MALICIOUS SOFTWARE
USING MACHINE LEARNING TECHNIQUES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/308,533, filed Nov. 30, 2011, which in turn
claims priority to U.S. Provisional Patent Application No.
61/418,514, filed on Dec. 1, 2012, U.S. Provisional Patent
Application No. 61/418,532, filed on Dec. 1, 2010, U.S. Pro-
visional Patent Application No. 61/418,547, filed on Dec. 1,
2010 and U.S. Provisional Patent Application No. 61/418,
580, filed on Dec. 1, 2010. The entirety of each of these
applications is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to the security of general
purpose computing devices and more specifically to the
detection of malicious software (malware) on a general pur-
pose computing device.

BACKGROUND OF THE INVENTION

It is known in the art that each day, many tens of thousands
of new malicious software programs are discovered. These
programs can compromise the security of general computing
devices. Possible security violations include, but are not lim-
ited to, the theft of data from the system, the usurping of the
system for other nefarious purpose (like sending spam email),
and, in general, the remote control of the system for other
malicious actions.

One popular technique in the art for detecting malicious
software comprises the following steps:

a. Hstablishing through some independent means that the

application is malicious (e.g., by manually analyzing it).

b. Computing a hash or fingerprint of this software. A hash
is a mathematical transformation that takes the underly-
ing binary contents of a software application and pro-
duces a relatively short string, with the idea being that
two different applications will, with overwhelmingly
high probability, have distinct fingerprint values. Com-
mon functions for performing this fingerprinting or
hashing step include SHA-256, SHA-1, MD5, and oth-
ers. Besides hash and fingerprint, another term used in
the art to describe this transformation is a signature. For
the purposes of this invention, the terms hash, finger-
print, and signature will be used interchangeably.

c. Publishing this hash so that it is accessible to end-users
operating a general purpose computing device.

d. Having the device compare this fingerprint with the
fingerprint of any new software applications that have
arrived on the system.

e. Applying a set of steps based on a given policy if the
fingerprints match (e.g., blocking the installation of the
application).

The above technique suffers from the drawback that it only
works when an application is determined to be malicious
ahead of time. Put differently, it is a reactive approach. It is
understood in the art that oftentimes superficial changes to a
malicious application will cause it to have a different finger-
print even though the underlying actions of the application
continue to be malicious. If the fingerprint changes, then it
will no longer match the one that was initially established for
the application, and consequently the application can poten-
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tially evade detection by anti-malware technology. Indeed,
the explosion in malware instances appears to be a result of
malware authors making frequent, but innocuous, changes to
a smaller number of applications rather than creating entirely
new applications.

There is, accordingly, a need in the art to develop methods,
components, and systems for detecting malicious software in
a proactive form that addresses the above limitations.

SUMMARY OF THE INVENTION

According to one aspect of the present invention, a system
is provided that uses machine learning techniques to identify
a software application as malicious. The system comprises
the following phases. First, there is a training phase in which
a corpus of training data is used to derive a model. The model
takes as input a feature vector that can be derived by applying
amathematical transformation to a software application. Sec-
ond, there is a feature extraction phase in which a client
system can extract a feature vector from a potentially mali-
cious software application and either evaluate it directly using
the model or transmit it to a back-end server for evaluation.
Third, there is an evaluation phase wherein the model is
applied to the extracted feature vector to determine whether
the application of interest is likely malicious or benign (op-
tionally producing not just a binary classification but possibly
a score that represents the likelihood of this distinction—e.g.,
a score from 0 to 100 where O represents that an application is
with overwhelming likelihood clean and 100 means an appli-
cation is with overwhelming likelihood malign). Fourth,
based on this determination, an appropriate policy may be
applied. According to another aspect of the present invention,
one or more server-side components are presented that may
perform the training phase. In one embodiment, the data used
to derive the model can be taken directly from transaction logs
of'actual client systems that communicate with the server side
component. The methods by which training can be done
include, but are not limited to, Support Vector Machines,
Neural Networks, Decision Trees, naive Bayes, Logistic
Regression, and other techniques from supervised, semi-su-
pervised, and unsupervised learning. The training or “model-
derivation” aspect of the invention may be practiced with any
of'the above techniques so long as they can yield a method for
classifying software applications. Once the training is com-
plete and a model is derived, the server side component can
automatically create a module that uses the model to evaluate
the feature vectors of new software instances.

According to another aspect of the present invention, a
client-side component is provided that may perform the fol-
lowing steps: first, extract relevant feature vector values from
a software application; second, optionally compare these val-
ues to a local model to determine if the application is mali-
cious or benign or requires further investigation; third,
optionally compress the feature vector so that it can be
encoded in with a small number of bytes; fourth, transmit the
(compressed or uncompressed) feature vector to a server;
fifth, apply a policy based on the server’s response. The policy
based on the server’s response might include, but would not
be limited to one or more options. First, if the application is
conclusively malicious, the client side component may
remove it from the system or block any installation attempt by
the user. Second, if the application is possibly, but not con-
clusively malicious, the client side component may transmit a
copy of the application itself to the server for subsequent
more extensive processing and analysis. According to another
aspect of the present invention, a server-side component is
provided that may perform the following steps: first, receive a
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feature vector (that was transmitted by the client); second,
optionally decompress this feature vector if it was com-
pressed by the client; third, evaluate this feature vector and
determine how likely it is to be malicious; fourth, transmit this
information to the client together with optional instructions
for how the client should respond. Note that in one embodi-
ment of the present invention, the actual policy for how to
handle different server responses can be stored on the client
itself, and the server can provide a simple response. Accord-
ing to another aspect of the present invention, a method is
provided for training a model that can be used to determine if
a software application is potentially malicious. The method
can potentially leverage actual in-field usage data. According
to another aspect of the present invention, a method is pro-
vided for a client to extract a feature vector from a software
application together with related contextual information on
the system, (optionally) compress this information, and then
transmit it to a server-side component. According to another
aspect of the present invention, a server-side component is
provided that can take a possibly compressed feature vector,
decompress it if is compressed, evaluate the feature vector
against a model, compare the results to those achieved from
other methods for identifying malicious software, and then
provide a disposition to a client.

DESCRIPTION OF THE DRAWINGS

The present invention will be understood more fully from
the detailed description given below and from the accompa-
nying drawings of various embodiments of the invention,
which, however, should not be taken to limit the invention to
the specific embodiments, but are for explanation and under-
standing only.

The subsequent description of the preferred embodiments
of the present invention refers to the attached drawings,
wherein:

a. FIG. 1 represents a flowchart of the training procedure in
accordance with an embodiment of the present invention.

b. FIG. 2 represents a flowchart of a client-side feature
extraction method in accordance with an embodiment of the
present invention.

c. FIG. 3 represents a flowchart of the server-side evalua-
tion method in accordance with an embodiment of the present
invention.

d. FIG. 4 is a representation of a client component includ-
ing a feature vector extraction module in accordance with an
embodiment of the invention.

e. FIG. 5 is representation of a server component including
a feature vector evaluation model and a training module in
accordance with an embodiment of the present invention.

f. FIG. 6 is representation of an exemplary computer sys-
tem.

DETAILED DESCRIPTION OF THE INVENTION

In the following description, numerous details are set forth
to provide a more thorough explanation of the present inven-
tion. It will be apparent, however, to one skilled in the art, that
the present invention may be practiced without these specific
details. In other instances, well-known structures and devices
are shown in block diagram form, rather than in detail, in
order to avoid obscuring the present invention.

Some portions of the detailed descriptions that follow are
presented in terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
These descriptions and representations are the means used by
those skilled in the data processing arts to most effectively
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convey the substance of their work to others skilled in the art.
The steps described herein are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements, sym-
bols, characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The present invention also relates to apparatus for perform-
ing the operations herein. This apparatus may be specially
constructed for the required purposes, or it may comprise a
general-purpose computer selectively activated or reconfig-
ured by a computer program stored in the computer. Such a
computer program may be stored in a computer readable
storage medium, such as, but is not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, and mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMs, magnetic
or optical cards, or any type of media suitable for storing
electronic instructions, and each coupled to a computer sys-
tem bus.

The descriptions presented herein are not inherently
related to any particular computer or other apparatus. Various
general-purpose systems may be used with programs in
accordance with the teachings herein, or it may prove conve-
nient to construct more specialized apparatus to perform the
required method steps. The required structure for a variety of
these systems will appear from the description below. In
addition, the present invention is not described with reference
to any particular programming language. It will be appreci-
ated that a variety of programming languages may be used to
implement the teachings of the invention as described herein.
A machine-readable medium includes any mechanism for
storing or transmitting information in a form readable by a
machine (e.g., acomputer). For example, a machine-readable
medium includes read only memory (“ROM™); random
access memory (“RAM”); magnetic disk storage media; opti-
cal storage media; flash memory devices; electrical, optical,
acoustical or other form of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.); etc.

The description that follows will reference terminology
that is generally known in the art. In the art, the term malware
refers to a malicious software application. Such an applica-
tion can have a number of nefarious purposes. For example,
malware can be used to perform a number of malicious
actions. These actions include, but are not limited to: stealing
digital information from a victim’s machine; using the vic-
tim’s machine in the perpetration of other malicious activities
(such as sending out unsolicited email messages or spam);
remotely controlling the victim’s machine; and inhibiting the
machine from operating normally. In the art, a computer virus
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is generally considered one example of malicious software. In
addition to computer viruses, other types of malware in the art
include Trojans, Worms, Downloaders, and Misleading
Applications.

It is understood that the maliciousness of an application
can be subjective; it often depends on the user and typically
includes a well-defined set of rules. For the purposes of this
disclosure, a malicious application shall be understood to
mean an application that is unwelcome to the user.

In the art, the term false positive references a situation in
which an otherwise legitimate application is accidentally
deemed malicious. Similarly, a true positive references a situ-
ation in which a malicious application is correctly identified
as such. It is therefore the objective of anti-malware software
to achieve a high true positive rate while having a low false
positive rate.

In the art, the term signature references a relatively short
sequence of values that can be used to identify if an applica-
tion is malicious or not. In its most general incarnation, the
signature is computed as a transformation applied to an entire
software application. In the art, a signature is typically com-
puted (e.g., by an anti-malware technology vendor) on a
known piece of malware. The signature is either transmitted
onto aclient’s system or it is stored on a server. When a client
encounters a new piece of software, it will compute a signa-
ture on that software, and determine if that signature matches
one associated with a known piece of malicious software
either by checking its local data store or by querying a server.
Itis understood in the art that a signature can either be specific
or generic. [ftwo software applications have the same specific
signature, then with overwhelming likelihood, these two
applications are entirely identical. One example of a specific
signature in the art is a SHA-256 hash. A generic signature
permits that possibility that variations on a given application
will continue to have the same signature. If an application is
taken, and superficial changes are made to it, then the generic
signature on this application might continue to be the same as
the original whereas a specific signature on it will with
extremely high likelihood be different from that computed on
the original. One example of a generic signature in the art is
the PEhash. Another example of a generic signature in the art
is ssdeep.

In the art, the term fingerprint is often associated with a
traditional signature and the term fuzzy fingerprint is often
associated with a generic signature. In the art, the term con-
viction refers to a situation in which a piece of software is
identified as malicious on a client system.

In the art, the term digital signature refers to a standard
technology for computing a relatively short string from a file
using techniques from the field of public-key cryptography.
The transformation to compute the string from the file
requires the use of a so-called private signing key. A public
verification can be used to determine if a purported signature
on a file has been correctly computed. A secure signature
scheme is such that without knowledge of the private signing
key, it is computationally infeasible for one to compute a
signature that will be construed as valid. A digital signature
should not be confused with the types of signatures men-
tioned above for detecting malicious applications (even
though in the art these notions all use the term “signature”).

The following description will also reference terminology
from the field of machine learning, and may be known to one
skilled in the art. For the sake of clarity, some relevant termi-
nology from the field of machine learning will be reviewed. In
its simplest form, machine learning techniques can be used to
classify objects into one of a plurality of sets. Within the
context of anti-malware solutions, machine learning tech-
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6

niques may be used to identify whether a given software
application is likely to be malicious or benign, and potentially
produce a score that reflects the confidence in that classifica-
tion.

In the following, the nomenclature associated with
machine learning techniques will be described in reference to
their application towards the classification of software appli-
cations as malicious or benign.

Machine learning approaches first tend to involve what is
known in the art as a training phase. In the context of classi-
fying software applications as benign or malicious, a training
“corpus” is first constructed. This corpus typically comprises
a set of software applications. Each application in this set is
optionally accompanied with a “label” of it disposition, for
example “benign”, “malign”, or “unknown”. The labels can
be determined either through manual analysis or through
some other independent and possibly more expensive means.
It is desirable to have fewer unknown samples. Furthermore,
it is desirable for the corpus to be representative of the real
world scenarios in which the machine learning techniques
will ultimately be applied. For example, in the context of
classifying software applications, it might be desirable if the
applications in the corpus are reflective of what might be
found on a typical end-user computer system. In the first
phase of the training process, a feature vector is extracted
from each software application. A feature vector is a series of
values that represent the salient features of an application in
the corpus. The expectation is that these values are especially
relevant for identifying whether the application is more likely
to be malicious versus benign.

For example, one feature value might be a single binary
digit (0 or 1) representing whether the file is digitally signed.
This feature might be relevant since in practice illegitimate
applications are infrequently digitally signed. Another rel-
evant feature might be the size of the file containing the
software application. This feature might be relevant since
malicious applications tend to have a smaller size than benign
ones. It is important to note that any single feature might not
yield any conclusive evidence over whether an application is
legitimate, but examining a plurality of such feature values
could provide conclusive evidence. It is also important to note
that in many instances the kind of features to use is often
determined through specific domain expertise rather than
being derived automatically. For example, it might require
domain expertise to determine that knowing whether a file is
digitally signed is valuable information.

Once feature vectors are extracted from the training cor-
pus, then these vectors, together with the labels associated
with any of the files themselves, are fed into an algorithm that
implements the “training phase.” The goal of this phase is to
automatically derive a “model”. A model effectively encodes
a mathematical function whose input is a feature vector and
whose output is a classification. In the context of using
machine learning to detect malware, the output of the model
(when applied to a file whose disposition is being sought)
might be a binary label of either “benign” or “malign”. Cer-
tain machine learning models are also capable of producing a
score that reflects the confidence in the label. For example, the
output might be (“malign”, 0.95) which can be taken to mean
that the model believes that the feature vector has a 95%
chance of corresponding to a malicious software application.
A machine learning algorithm should ideally produce a clas-
sifier that is reasonably consistent with the training examples
and that has a reasonable likelihood of generalizing to new
instances. Generalization is important since it is expected that
in practice the model will be evaluated on instances whose
dispositions are not already known.
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Specific machine learning algorithms in the art include the
Naive Bayes Algorithm, Artificial Neural Networks, Deci-
sion Trees, Support Vector Machines, Logistic Regression,
Nearest Neighbors, etc. The term classifier is also used to
describe a model. For example, one may refer to a Support
Vector Machine classifier. Once the model/classifier is estab-
lished, it can be used to evaluate new instances of software
that are presented to a computer or computer network in
practice.

In the context of detecting malware, a client system would
first extract the feature vector associated with a software
application and then apply the model to that feature vector to
obtain a disposition and optionally a confidence. The
attributes in the feature vector comprise attributes of the soft-
ware application as well as contextual attributes of the system
it is running on. Finally, the client system would apply a
policy based on this information. The actual classification
process need not happen locally on the client. Instead, it could
be performed on a remote server, in which case it is expected
that the client will transmit an encoding of the feature vector
to the server. The policy associated with the final classifica-
tion could be complex if the classification also includes a
confidence value. For example, if a system is highly critical or
holds very sensitive information, then an application might be
blocked unless there is a high likelihood of it being benign.
On the other hand, if the system is not as sensitive then, the
converse stance can be taken. Specifically, only applications
that have a high likelihood of being malicious would be
blocked.

The following description will also make use of the con-
cept of a log, which is known in the art. A log is a record of
transactions and actions made on a given system. For
example, if a system were a web server, then a log would
comprise a description of the plurality of clients who con-
nected to the system, the times they connected, and what
actions they took. With a log, on can construct a reasonable
synopsis of what happened on a given system. In the context
of an Anti-Virus system, including one that uses a server
component for assisting a client that desires a disposition for
agiven software application, a log entry could include, but not
necessarily be limited to, the following: a client identifier that
can be used to link disparate transactions from the same
client, a timestamp specifying the time a client made a par-
ticular request for the disposition of a particular application,
the location of the client (as specified by its Internet Protocol
or IP address), a description of the file whose disposition is
being requested (e.g., as encoded by a file fingerprint such an
MDS or a SHA-256), any Anti-Virus fingerprints associated
with the application (including, but not limited to traditional
fingerprints and generic fingerprints), attributes of the soft-
ware application in question (including, but not limited to a
machine learning feature vector of the attributes of the appli-
cation of interest), contextual data about the application of
interest that may aid in determining its disposition, the
response of the server component (including, but not limited
to the final assigned disposition of the application, a sub-
disposition that provides additional description about the
application such as that the application was previous unseen
or is common in the field, the recommendation the server
makes to the client about that application, and the dispositions
assigned by different sub-technologies that were used in the
process of coming up with a final disposition, and a caching
time or time-to-live for the response that indicates how long
the response might be valid for).

Since queries to a server can be complex and multi-faceted,
the log entry can also include an entry that specifies a query
type. Forexample, in one query to a server, a client might only
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include a basic fingerprint. In a subsequent query for the same
file the client might include additional information. These
two queries can be recorded separately with different query
types (though when analyzing the logs, it might help to link
the fact that the same client made two queries about the same
file). A log would them comprise a plurality of log entries
transmitted by a plurality of clients. In the context of the
disclosed invention, the machine learning techniques that will
be deployed can be trained directly off of log data.

In one embodiment of the present invention, the client and
server components would function as follows. During the
initialization phase, the server would train a classifier. In one
embodiment, the training data can be taken directly from
actual existing user logs where a fingerprint for a file was
submitted earlier and was classified possibly through inde-
pendent means. For example, the file might have been known
to be benign or malicious because of its presence on an
existing whitelist or blacklist.

The log data can be optionally stratified or partitioned
based on different criteria such as whether the users have
natural groupings and sub-groupings that can include, but not
be limited to, geographic groupings (i.e., the users are from
similar locales) and affiliate groupings (that is, the users
might be affiliated with each other—for example, they may
all be members of the same enterprise or may have acquired
the system or software of the invention through a common
source—such as a common download server or common
distribution channel). If the training data is stratified or par-
titioned according to some criteria, then the training data used
can be derived from a plurality of partitions or strata from the
logs. A benefit of partitioning the training data is that machine
learning classifiers can be fine-tuned to a specific portion of
the input space and as a result can have improved perfor-
mance on instances of this portion of the space. The training
phase would have multiple parameters. Once a classifier is
developed, it may be deployed in the field.

In one embodiment, one could automatically generate
actual computer instructions (or some appropriate encoding
of computer instructions that can be subsequently inter-
preted) that implements the mathematical function specified
by the classifier. In one embodiment, these instructions can be
stored on a remote server. In an alternative embodiment, these
instructions can be transmitted to a plurality of client systems.

In another embodiment of the present invention, when a
client system encounters a new software application, it would
extract a feature vector associated with this application
together with any other data that might independently deter-
mine if the application is benign or malign. The feature vector
need not be limited to attributes of the specific application, but
could also include other attributes of the system on which the
application is running The attributes in the feature vector
associated specifically with the binary contents of the appli-
cation could include, but not be limited to, the following:
properties of the binary contents of the application; list of
Dynamic Linked Libraries (DLLs) referenced by the appli-
cation; values of specific positions within the binary contents;
the number of sections, number of symbols, and positions of
the different sections of the binary; size of the binary.

In some embodiments, the feature vector will include an
encoding of which Dynamic Linked Libraries are referenced
by the application. In other embodiments, the feature vector
will include the number of sections, number of symbols, and
positions of the different sections of the binary. In other
embodiments, the feature vector will include the size of the
binary. Attributes of the feature vector associated with the
application in general could include, but not be limited to:
information about the registry keys used in the application as
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well as any modifications made to the registry (typically for
threats that execute on Windows); the filename of the appli-
cation; behavioral attributes of the application, such as net-
work ports used and Application Programmer Interface calls
made; files modified and created by the application; and ser-
vices stopped or started by the application.

In some embodiments, the feature vector will include the
filename of the application and registry keys used. Attributes
of the feature vector associated with general context of the
application could include, but not be limited to: the processes
running on the system at the time the application is encoun-
tered; the source of the application (e.g., CD ROM, USB
Stick, Web Site); the infection history of the machine; the
geographic location of the machine; and the IP address of the
machine. In some embodiments, the feature vector would
include the source of the application and the processes run-
ning on the system at the time the application is encountered.
In other embodiments, the feature vector would include the IP
address of the machine. In general, the feature vector would
include information about a plurality of these features.

It should be borne in mind that in constructing the feature
vector, the foregoing feature values need not be transmitted
verbatim, but would be encoded in a way that facilitates the
application of machine learning techniques. For example,
rather than listing every Dynamic Linked Library associated
with an application, instead a binary value can be used to
denote whether a specific Dynamic Linked Library was used,
such as winsock.dll. In one embodiment, in addition to the
feature vector, the client can compute a traditional fingerprint
such as a SHA-256 or a generic fingerprint such as one
obtained through PEHash or SSdeep (both of which are
known in the art), or a combination of both. While the feature
vector is primarily relevant in classifying the file using the
machine learning techniques that have been outlined in the
foregoing, the other data might be of use for future training.
For example, a file whose disposition was unclear at the time
it is first encountered might be subsequently found on a black-
list of known malicious applications. If that list is indexed by
SHA-256, then having both the client compute both the SHA-
256 value as well as the feature vector would subsequently
allow the feature vector to be associated with a specific dis-
position. This feature vector can then be added to the training
corpus for future training phases.

In one embodiment of the present invention, the client can
take the feature vector value and compress it. While there are
general-purpose techniques in the art for compressing data,
for this particular instance, special-purpose techniques that
yield desirable performance parameters, particularly with
respect the amount of data communicated between the clients
and the server could also be used.

Upon optionally compressing this feature vector, in one
embodiment of the present invention, the resulting data would
be transmitted to aremote server. The client may alternatively
store the logic associated with the server so that a remote
look-up is avoided.

In one embodiment of the present invention, the server
would decompress, if necessary, the data transmitted by the
client, which includes the feature vector provided by it, and
then evaluate the feature vector against the model it has in
place. If the client provided other data such as a traditional
fingerprint or a generic fingerprint, then the server can option-
ally override the results from the classifier with a disposition
arrived through more traditional means. For example, if the
client transmitted the SHA-256 value of the application is it
concerned with, and this value happens to be on a known
whitelist of good applications, then the server can respond
that the application in question is good regardless of what the
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machine learning model says. The premise behind this
approach is that the machine learning model may be more
fallible than a direct whitelist or blacklist (though one should
keep in mind that whitelists and blacklists have limitations as
well—e.g., they may only have a modest number of entries,
whereas a machine learning model can be applied to any file,
even one that was not previously known). The server would
then provide a response to the client regarding what its ulti-
mate verdict was together, if necessary, with information on
what actions it would like the client to perform. The transac-
tion record associated with this transaction, comprising a
client identifier, a timestamp, the feature vector values, the
other fingerprint values, and the ultimate disposition and
information on how that disposition was derived, information
on what type of action the server would like the client to
perform, among other things, is optionally recorded. This
transaction record can be used subsequently in the training
phase of a new classifier since it has three desirable charac-
teristics of a training corpus. First, it contains a feature vector
that can be provided as input into a machine learning training
algorithm. Second, it contains a disposition, which many
training algorithms require. It should be borne in mind, how-
ever, that for training purposes it would be desirable to use
dispositions attained through independent means like generic
or specific fingerprints rather than previous machine learning
based dispositions, otherwise there is a risk of introducing a
circular feedback loop. Third, the training example generated
from this data is coming from an actual user instance in the
field and hence is likely to be a good representation of what a
typical user will encounter in the future.

In one embodiment of the present invention, the client
would receive a verdict from the server as well as possible
actions associated with that verdict, and act in accordance
with that response according to a specified policy. In one
embodiment, the possible response could comprise, but not
be limited to, the following: convicting the application (i.e.,
removing it from the system or blocking a user from installing
it) and optionally transmitting a copy to the server; or allow-
ing the application to stay on the system; and/or requesting
the application to be transmitted from the client to the server
for additional analysis.

The last option would, for example, be relevant if the server
thinks that the application is potentially malicious, but its
confidence is not high enough and has an uncomfortably high
risk of causing a false positive (in this case, by transmitting
the file to the server, additional more extensive analysis can be
performed on it—such analysis might be too expensive to
perform for each file encountered, but might be suitable when
applied just to the subset of files that are suspicious).

In one embodiment of the present invention, the server can
put a number of safeguards in place to reduce the risk that a
given benign application is incorrectly called malicious.
These safeguards can include, but are not limited to the fol-
lowing. First, as mentioned in the foregoing, ifthe application
is known to be good through a more direct means (such as the
traditional fingerprint, like a SHA-256, matching one on a
known whitelist of good software applications), then the
server can override the disposition provided from the
machine learning classifier. Second, the use of the machine
learning classifier can be throttled. For example, the server
can limit the number of convictions associated with this clas-
sifier to a modest number. Even further, the number of clas-
sifications associated with a given application can be
throttled. For example, for every SHA-256, it can be con-
victed no more than N times (for a modest choice of N like 3)
using machine learning classifiers. This measure would
ensure that if there is a mistake, its damage would be con-
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tained (and since most malicious software tends to have low
frequency because of its fly-by-night danger, this type of
throttling can yield a favorable tradeoff between the detection
rate and false positive rate). Third, convictions with a
machine learning classifier could be restricted to certain
classes of files that have a slightly higher likelihood of being
malicious. For example, it is known in the art that files with a
smaller size have a higher likelihood of being malicious com-
pared to larger files. This is the case since malicious parties
have a higher chance of success of transmitting a smaller file
onto a victim’s machine. It is also known in the art that
digitally signed files have a smaller likelihood of being mali-
cious compared to digitally unsigned files. Similar consider-
ations can apply for other file attributes as well. Therefore, in
one embodiment of the present invention, machine learning
classifier based convictions can be optionally restricted spe-
cifically to software applications whose size is below a certain
threshold and that are not digitally signed. Fourth, convic-
tions with a machine learning classifier can be reserved for
specific situations.

In one embodiment of the present invention, if a machine
has a propensity for getting infected with a specific threat (for
example, it has encountered this type of threat previously orit
is in a geographic region associated with a particular threat),
then we can apply a machine learning classifier to such cases.
Fifth, classifiers can be made to model specific threat
instances. For example, one popular malicious software
threat in the art is known as Conficker. There are many varia-
tions of Conficker, but there is sufficient commonality among
these variations to view them as part of the same overall
family. In one embodiment of the present invention, there-
fore, a classifier can be trained specifically to target a specific
threat. To do so, the clean files and feature vectors in the
corpus can remain the same, but only malicious files and
feature vectors associated with a specific threat can be
included. A benefit of this approach is that a classifier which
is fine-tuned to a specific threat might yield a low false posi-
tive rate for that threat and also some end-users might desire
to know which particular threat targeted their system. Sixth,
the application of the classifiers can be restricted to files
whose popularity is below a specified threshold. In one
embodiment, a parameter N can be introduced into the system
and an application would only be convicted if fewer than N
systems appear to have this application. Seventh, the appli-
cation of some classifiers can be restricted to situations in
which the system in question has a slightly higher chance of
being infected with a threat. Indicators that suggest an
increase in likelihood of being infected include, but are not
limited to, an observation of recent infections on the system,
knowledge that the system was recently targeted for attack,
the presence of vulnerable software applications on the sys-
tem, the presence of applications on the system that are com-
mon vectors for infections (such as Peer-to-Peer file sharing
clients), and the presence of open network ports on the sys-
tem.

It should be borne in mind, however, that practices that
attempt to reduce the false positive rate also generally reduce
the detection rate since some actual malware might be inad-
vertently be called good as a result of this safety net. In the art,
it is acknowledged that such a tradeoff exists and depending
on the specific application, it would be determined whether
this tradeoff happens to be desirable. For example, if the risk
of'a false positive is reduced dramatically whereas the detec-
tion rate is only reduced slightly, then the tradeoff may be
favorable. Alternatively, if the cost of a false positive is very
high, which is very possible given that blocking a legitimate
application could translate into monetary business losses,
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then it may be desirable to take a more conservative stance
that reduces it substantially even if that creates a correspond-
ing substantial drop in detection rate. On the other hand, if the
costofamissed detection (or false negative) is very high, such
as what might happen for a system that needs to be highly
secured, then a high false positive rate might be tolerable so
long as the risk of a threat infiltrating the system is made very
small.

FIG. 6is ablock diagram of an exemplary computer system
that may perform one or more of the operations described
herein. Referring to FIG. 6, the computer system may com-
prise an exemplary client or server computer system. The
computer system comprises a communication mechanism or
bus for communicating information, and a processor coupled
with a bus for processing information. The processor includes
a microprocessor, but is not limited to a microprocessor, such
as, for example, Pentium, PowerPC, Alpha, etc. The system
further comprises a random access memory (RAM), or other
dynamic storage device (referred to as main memory)
coupled to the bus for storing information and instructions to
be executed by the processor. Main memory also may be used
for storing temporary variables or other intermediate infor-
mation during execution of instructions by the processor.

The computer system also comprises a read only memory
(ROM) and/or other static storage device coupled to the bus
for storing static information and instructions for the proces-
sor, and a data storage device, such as a magnetic disk or
optical disk and its corresponding disk drive. The data storage
device is coupled to the bus for storing information and
instructions. The computer system may further be coupled to
a display device, such as a cathode ray tube (CRT) or liquid
crystal display (CD), coupled to the bus for displaying infor-
mation to a computer user. An alphanumeric input device,
including alphanumeric and other keys, may also be coupled
to the bus for communicating information and command
selections to the processor. An additional user input device is
cursor control, such as a mouse, trackball, track pad, stylus, or
cursor direction keys, coupled to the bus for communicating
direction information and command selections to the proces-
sor, and for controlling cursor movement on the display.
Another device that may be coupled to the bus is a hard copy
device, which may be used for printing instructions, data, or
other information on a medium such as paper, film, or similar
types of media. Furthermore, a sound recording and playback
device, such as a speaker and/or microphone may optionally
be coupled to the bus for audio interfacing with the computer
system. Another device that may be coupled to the bus is a
wired/wireless communication capability to communication
to a phone or handheld palm device.

Note that any or all of the components of the system and
associated hardware may be used in the present invention.
However, it can be appreciated that other configurations of the
computer system may include some or all of the devices.

Example 1

This example illustrates a specific instance of the inven-
tion, describing the steps and actions along the way. This
example is provided to help clarify the description, and it
should not be considered limiting in any way. For example,
the above invention description covers many variations and
extensions. To avoid obscuring the description, these varia-
tions and extensions are not discussed below.

To begin, consider a piece of agent software running on a
user’s machine. According to this example, the agent soft-
ware contains a Microsoft Windows filesystem mini-filter
driver that can detect when a new (executable) file is being
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written to the file system. Other software that can detect when
a new executable file is being written to the file system can
also be used. Following notification that there has been or is
an attempt to write a file to the file system, the software agent
computes two values. First, it computes a “traditional” fin-
gerprint, such as a SHA-256, on the file. Second, it computes
a machine learning feature vector from the file. The feature
vector will comprise a number of attributes associated with
the file on this system, including, but not limited to: which
DLLs are referenced by the application, the values of specific
positions of the binary contents, the number of sections in the
file (and any attributes associated with those sections—such
as whether it is readable, writeable, or executable), the num-
ber of symbols, the size of the binary, whether the binary is
digitally signed, etc. All of these attributes are easily com-
puted from the binary contents of the file. In addition, other
contextual pieces of information are included in the feature
vector, including, but not limited to, the file system times-
tamp, properties of the filename (note that the same file may
have different names on different systems, so this attribute is
specific to an instance of the file on a given system), infor-
mation about other software applications installed on the
system (e.g., whether the system has any vulnerable software
or software that commonly leads to a system infection, etc.),
and recent infection history of the system (e.g., such as
whether the user experienced any infections in the last half an
hour). These attributes are encoded appropriately, and com-
pressed as well (for compact transmission).

The client then sends the fingerprint and the feature vector
to a server. In addition to these two values, the client may
optionally include an identifier (to help link other transactions
from the same client).

The server, in turn, first looks up the file in any blacklists
and whitelists (using, for example, the traditional fingerprint
to perform this look-up). If this look-up results in a conclusive
disposition (e.g., the file is conclusively known to be mali-
cious or benign), then this disposition is communicated to the
client. The server at this stage can optionally look-up addi-
tional information about the file (e.g., how many users it has,
etc.), and then store the fingerprint, the basic feature vector,
the additional information, the timestamp of the query, the
user’s identifier, and the disposition per the blacklists/
whitelists. The storage format may be a server transaction log.

If the server does not find the file in any blacklists or
whitelists, then it will perform the following steps. First, it can
optionally augment the feature vector provided by the client
with other attributes that it is able to compute. These attributes
can include, but not be limited to, the frequency with which
the file appears in the user base and a server-side time stamp
representing the first time the file was ever seen on the server.

The server then evaluates this augmented feature vector
using a machine learning classifier (e.g., a Support Vector
Machine, Decision Trees, Neural Networks, etc.). The client
is provided with a disposition (e.g., malicious/benign) and an
optional confidence rating, and the transaction is logged for
future analysis.

Periodically, the server can scour through all previous logs
and retrieve all feature vectors associated with files whose
fingerprints are on known whitelists/blacklists. The server
can create a training corpus associated with the feature vec-
tors corresponding to fingerprints from known whitelists and
blacklists (i.e., those items on the whitelists would be the
“benign” subset of the corpus and those items on blacklists
would on the “malicious” subset of the corpus.

A machine learning classifier (e.g., a Support Vector
Machine, Decision Trees, Neural Networks, etc.) can be
trained on this corpus. Note that there are severeal ways to
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initiate or “jumpstart” the system. We can begin with a data
collection phase (e.g., imagine some type of silent detection
capability).

Whereas many alterations and modifications of the present
invention will no doubt become apparent to a person of ordi-
nary skill in the art after having read the foregoing descrip-
tion, it is to be understood that any particular embodiment
shown and described by way of illustration is in no way
intended to be considered limiting.

The invention claimed is:

1. One or more non-transitory computer readable storage
media encoded with instructions that, when executed by one
or more computer processors, cause the one or more com-
puter processors to perform operations comprising:

before execution of a software application, extracting a

feature vector from the software application by applying
amathematical transformation operation to the software
application to generate a series of values that represents
features of the software application and that is indicative
of whether or not the software application is likely to be
benign or malicious; and

generating information indicative of a maliciousness of the

software application by applying said feature vector to a
classification algorithm concerning whether said soft-
ware application is benign or potentially malicious,
wherein the classification algorithm produces a score
that represents a confidence in its determination as to
whether the software application is benign or malicious.

2. The non-transitory computer readable storage media of
claim 1, further comprising instructions operable to perform
operations including:

causing transmission of said feature vector to a server

application that performs the generating information
indicative of a maliciousness of the software applica-
tion.

3. The non-transitory computer readable storage media of
claim 1, further comprising instructions operable to perform
operations including:

accessing in a training phase a body of training data includ-

ing a set of software applications; and

deriving during said training phase the classification algo-

rithm for determining whether software applications are
likely benign or malicious based on the training data.

4. The non-transitory computer readable storage media of
claim 1, wherein the data used to derive the classification
algorithm is based on transaction logs of actual client sys-
tems.

5. The non-transitory computer readable storage media of
claim 1, wherein the classification algorithm is developed
using a machine learning method including one or more of:
Support Vector Machines, Neural Networks, Decision Trees,
naive Bayes, or Logistic Regression.

6. The non-transitory computer readable storage media of
claim 1, further comprising instructions operable for compar-
ing output of the classification algorithm to results from one
or more other processes for identifying malicious software.

7. The non-transitory computer readable storage media of
claim 1, further comprising instructions operable for deter-
mining how to treat the software application based on results
of'the classification algorithm.

8. One or more non-transitory computer readable storage
media encoded with instructions that, when executed by one
or more computer processors, cause the one or more com-
puter processors to perform operations comprising:

accessing in a training phase a body of training data includ-

ing a set of software applications to derive during said
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training phase a classification algorithm for determining
whether selected software applications are likely benign
or malicious;

receiving a feature vector relating to a software application

of interest, wherein the feature vector is generated by
applying a mathematical transformation operation to the
software application of interest and the feature vector
includes a series of values that represents one or more
features of the software application of interest indicative
of whether or not the software application of interest is
likely to be benign or malicious;

applying the feature vector to the classification algorithm;

and

generating information indicative of a maliciousness of the

software application of interest based on results of the
application of the feature vector to the classification
algorithm.

9. The non-transitory computer readable storage media of
claim 8, wherein the feature vector is received from a client
application, and further comprising instructions that, when
executed by the one or more computer processors, are oper-
able to transmit to the client application the information
indicative of the maliciousness of the software application of
interest.

10. The non-transitory computer readable storage media of
claim 8, wherein the classification algorithm produces a score
that represents confidence in its determination as to whether
the software application is benign or malicious.

11. The non-transitory computer readable storage media of
claim 8, wherein the data used to derive the classification
algorithm is taken directly from transaction logs of actual
client systems.

12. The non-transitory computer readable storage media of
claim 8, wherein the classification algorithm is developed
using a machine learning method including one or more of:
Support Vector Machines, Neural Networks, Decision Trees,
naive Bayes, or Logistic Regression.

13. The non-transitory computer readable storage media of
claim 8, wherein the feature vector is encoded or compressed.

14. The non-transitory computer readable storage media of
claim 8, wherein the body of training data includes actual
in-field usage data.

15. The non-transitory computer readable storage media of
claim 8, further comprising instructions operable for compar-
ing output of the classification algorithm to results from
another algorithm used to identify malicious software.

16. An apparatus comprising:

one or more network interfaces configured to transmit and

receive data on a computer network;

a processor coupled to the network interfaces and config-

ured to execute one or more processes; and
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a memory configured to store instructions executable by
the processor, when executed causing the processor to
perform operations comprising:
accessing in a training phase a body of training data

including a set of software applications to derive dur-
ing said training phase a classification algorithm for
determining
whether selected software applications are likely benign or
malicious;
receiving a feature vector relating to a software applica-
tion of interest, wherein the feature vector is gener-
ated by applying a mathematical transformation
operation to the software application of interest and
the feature vector includes a series of values that rep-
resents one or more features of the software applica-
tion of interest indicative of whether or not the soft-
ware application of interest is likely to be benign or
malicious;

applying the feature vector to the classification algo-
rithm; and

generating information indicative of a maliciousness of
the software application of interest based on results of
the application of the feature vector to the classifica-
tion algorithm.

17. The apparatus of claim 16, wherein the feature vector is
received from a client application, and wherein the processor
is operable to cause the information indicative of the mali-
ciousness of the software application of interest to be trans-
mitted, via the network interfaces, to the client application.

18. The apparatus of claim 16, wherein the classification
algorithm produces a score that represents confidence in its
determination as to whether the software application of inter-
est is benign or malicious.

19. The apparatus of claim 16, wherein application of the
classification algorithm is restricted to files whose popularity
is below a specified threshold such that the software applica-
tion of interest is flagged as being malicious if fewer than a
predetermined number of systems appear to use the software
application of interest.

20. The apparatus of claim 16, wherein the feature vector
includes information indicating one or more of: which
dynamic linked libraries are referenced by the application,
values of specific positions of binary contents, number of
sections in a file and any attributes associated with those
sections, number of symbols, size of a binary file, whether the
binary file is digitally signed, a file system timestamp, prop-
erties of a filename, other installed software applications, or
recent infection history.
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